首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6918篇
  免费   235篇
  国内免费   231篇
  2024年   8篇
  2023年   42篇
  2022年   62篇
  2021年   104篇
  2020年   97篇
  2019年   160篇
  2018年   207篇
  2017年   95篇
  2016年   113篇
  2015年   156篇
  2014年   375篇
  2013年   475篇
  2012年   260篇
  2011年   406篇
  2010年   230篇
  2009年   355篇
  2008年   389篇
  2007年   366篇
  2006年   375篇
  2005年   377篇
  2004年   325篇
  2003年   285篇
  2002年   246篇
  2001年   155篇
  2000年   163篇
  1999年   170篇
  1998年   154篇
  1997年   146篇
  1996年   118篇
  1995年   133篇
  1994年   96篇
  1993年   70篇
  1992年   76篇
  1991年   62篇
  1990年   56篇
  1989年   50篇
  1988年   56篇
  1987年   46篇
  1986年   35篇
  1985年   62篇
  1984年   47篇
  1983年   30篇
  1982年   27篇
  1981年   22篇
  1980年   28篇
  1979年   19篇
  1978年   13篇
  1977年   12篇
  1976年   15篇
  1973年   6篇
排序方式: 共有7384条查询结果,搜索用时 15 毫秒
41.
《Free radical research》2013,47(2):82-88
Abstract

Endothelial dysfunction characterized by decreased nitric oxide (NO) bioavailability is the first stage of coronary artery disease. It is known that one of the factors associated with an increased risk of coronary artery disease is a high plasma level of uric acid. However, causative associations between hyperuricaemia and cardiovascular risk have not been definitely proved. In this work, we tested the effect of uric acid on endothelial NO bioavailability. Electrochemical measurement of NO production in acetylcholine-stimulated human umbilical endothelial cells (HUVECs) revealed that uric acid markedly decreases NO release. This finding was confirmed by organ bath experiments on mouse aortic segments. Uric acid dose-dependently reduced endothelium-dependent vasorelaxation. To reveal the mechanism of decreasing NO bioavailability we tested the effect of uric acid on reactive oxygen species production by HUVECs, on arginase activity, and on acetylcholine-induced endothelial NO synthase phosphorylation. It was found that uric acid increases arginase activity and reduces endothelial NO synthase phosphorylation. Interestingly, uric acid significantly increased intracellular superoxide formation. In conclusion, uric acid decreases NO bioavailability by means of multiple mechanisms. This finding supports the idea of a causal association between hyperuricaemia and cardiovascular risk.  相似文献   
42.
The Escherichia coli fabH gene encoding 3-ketoacyl-acyl carrier protein synthase III (KAS III) was isolated and the effect of overproduction of bacterial KAS III was compared in both E. coli and Brassica napus. The change in fatty acid profile of E. coli was essentially the same as that reported by Tsay et al. (J Biol Chem 267 (1992) 6807–6814), namely higher C14:0 and lower C18:1 levels. In our study, however, an arrest of cell growth was also observed. This and other evidence suggests that in E. coli the accumulation of C14:0 may not be a direct effect of the KAS III overexpression, but a general metabolic consequence of the arrest of cell division. Bacterial KAS III was expressed in a seed- and developmentally specific manner in B. napus in either cytoplasm or plastid. Significant increases in KAS III activities were observed in both these transformation groups, up to 3.7 times the endogenous KAS III activity in mature seeds. Only the expression of the plastid-targeted KAS III gene, however, affected the fatty acid profile of the storage lipids, such that decreased amounts of C18:1 and increased amounts of C18:2 and C18:3 were observed as compared to control plants. Such changes in fatty acid composition reflect changes in the regulation and control of fatty acid biosynthesis. We propose that fatty acid biosynthesis is not controlled by one rate-limiting enzyme, such as acetyl-CoA carboxylase, but rather is shared by a number of component enzymes of the fatty acid biosynthetic machinery.  相似文献   
43.
Mitochondria from different organisms can undergo a sudden process of inner membrane unselective leakiness to molecules known as the mitochondrial permeability transition (MPT). This process has been studied for nearly four decades and several proteins have been claimed to constitute, or at least regulate the usually inactive pore responsible for this transition. However, no protein candidate proposed as the actual pore-forming unit has passed rigorous gain- or loss-of-function genetic tests. Here we review evidence for -and against- putative channel-forming components of the MPT pore. We conclude that the structure of the MPT pore still remains largely undefined and suggest that future studies should follow established technical considerations to unambiguously consolidate the channel forming constituent(s) of the MPT pore.  相似文献   
44.
45.
Synthetic part sequences of human pituitary growth hormone (hGH 176–191 and hGH 177–191) corresponding to residues 176–191 or 177–191 of the hormone have been tested for their effects on glycogen and pyruvate metabolism in the rat, both in vivo and in vitro. When injected, the peptides caused transient increases in blood glucose and lactate, while decreasing the activity ratio of glycogen synthase in muscle, adipose tissue and liver and of pyruvate dehydrogenase in muscle and adipose tissue, but not in liver. These decreases were associated with the conversion of the enzymes from their active to their inactive forms, since the peptides did not affect the total amount of either the synthase or the dehydrogenase. The time course of the effect on the enzymes was similar to that for the effect on blood metabolites, and responses for synthase were produced over the range 0.07–7 nmols hGH 177–191/kg body weight. Phosphorylase activity was not affected by the peptides, nor was the capacity to dispose of injected L-lactate. Experiments with adipocytes and hepatocytes showed that the peptides also affected glycogen synthase and pyruvate dehydrogenase activities in vitro. The peptides had no effect on the overall rate of gluconeogenesis from lactate by hepatocytes. However, at times corresponding to those at which glycogen synthase was inactivated, the peptides caused increased incorporation of lactate into free glucose and decreased incorporation into glycogen. It was concluded that the peptides acted directly on their target tissues, and that the observed hyperlactataemia was the result of the inactivation of pyruvate dehydrogenase. The addition lactate increased the flux through the gluconeogenic pathway, and appeared as glucose because the peptide also inactivated glycogen synthase. Thus, the hyperglycaemia produced by hGH 177–199 and related peptides is explicable in terms of a modified Cori Cycle.  相似文献   
46.
Abstract Amino acid sequence alignment of the Cephalosporium acremonium isopenicillin N synthase (cIPNS) to similar non-heme Fe2+-containing enzymes from 28 different sources (bacterial, fungal, plant and animals) revealed a homologous region of high sequence conservation containing an invariant histidine residue at position 272 in cIPNS. The importance of this histidine residue in cIPNS was investigated through site-directed mutagenesis by replacing the histidine residue with leucine. The mutated gene was verified by DNA sequence analysis and expressed in Escherichia coli . When analyzed by denaturing gel electrophoresis and immunoblotting, the mutant cIPNS had identical mobility as that of the wild-type enzyme. Enzyme studies on the mutant enzyme showed loss of enzymatic activity indicating that His272 is essential for the catalytic function of cIPNS, possibly as a ligand for iron binding.  相似文献   
47.
Colorectal carcinoma (CRC) poses heavy burden to human health and has an increasing incidence. Currently, the existing biomarkers for CRC bring about restrained clinical benefits. GSK3β is reported to be a novel therapeutic target for this disease but with undefined molecular mechanisms. Thus, we aimed to investigate the regulatory effect of GSK3β on CRC progression via FTO/MZF1/c-Myc axis. Firstly, the expression patterns of GSK3β, FTO, MZF1 and c-Myc were determined after sample collection. Lowly expressed GSK3β but highly expressed FTO, MZF1 and c-Myc were found in CRC. After transfection of different overexpressed and interference plasmids, the underlying mechanisms concerning GSK3β in CRC cell functions were analysed. Additionally, the effect of GSK3β on FTO protein stability was assessed followed by detection of MZF1 m6A modification and MZF1-FTO interaction. Mechanistically, GSK3β mediated ubiquitination of demethylase FTO to reduce FTO expression. Besides, GSK3β inhibited MZF1 expression by mediating FTO-regulated m6A modification of MZF1 and then decreased the proto-oncogene c-Myc expression, thus hampering CRC cell proliferation. We also carried out in vivo experiment to verify the regulatory effect of GSK3β on CRC via FTO-mediated MZF1/c-Myc axis. It was found that GSK3β inhibited CRC growth in vivo which was reversed by overexpressing c-Myc. Taken together, our findings indicate that GSK3β suppresses the progression of CRC through FTO-regulated MZF1/c-Myc axis, shedding light onto a new possible pathway by which GSK3β regulates CRC.  相似文献   
48.
TS (thymidylate synthase) is a key enzyme in the de novo biosynthesis of dTMP, and is indispensable for DNA replication. Previous studies have shown that intracellular degradation of the human enzyme [hTS (human thymidylate synthase)] is mediated by the 26S proteasome, and occurs in a ubiquitin-independent manner. Degradation of hTS is governed by a degron that is located at the polypeptide''s N-terminus that is capable of promoting the destabilization of heterologous proteins to which it is attached. The hTS degron is bipartite, consisting of two subdomains: an IDR (intrinsically disordered region) that is highly divergent among mammalian species, followed by a conserved amphipathic α-helix (designated hA). In the present report, we have characterized the structure and function of the hTS degron in more detail. We have conducted a bioinformatic analysis of interspecies sequence variation exhibited by the IDR, and find that its hypervariability is not due to diversifying (or positive) selection; rather, it has been subjected to purifying (or negative) selection, although the intensity of such selection is relaxed or weakened compared with that exerted on the rest of the molecule. In addition, we have verified that both subdomains of the hTS degron are required for full activity. Furthermore, their co-operation does not necessitate that they are juxtaposed, but is maintained when they are physically separated. Finally, we have identified a ‘cryptic’ degron at the C-terminus of hTS, which is activated by the N-terminal degron and appears to function only under certain circumstances; its role in TS metabolism is not known.  相似文献   
49.
50.
The synthesis, pharmacological evaluation and modelisation of 7-methoxyindazole (7-MI) and related alkoxy-indazoles as novel inhibitors of neuronal nitric oxide synthase are presented. 7-MI remains the most active compound of this series in an in vitro enzymatic assay of neuronal nitric oxide synthase activity. Modeling studies of the interaction of 7-substituted indazole derivatives complexed with nNOS and the relationship with their respective biological activities suggest that a bulky substitution on position-7 is responsible for a steric hindrance effect which does not allow these compounds to interact with nNOS in the same way as 7-NI and 7-MI.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号